
6/15/09 

1 

Advanced Crash Course in
Supercomputing: Programming Project

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004-2009 Rebecca Hartman-Baker. Reproduction permitted for
non-commercial, educational use only.

Programming Project

I.   Project Description

II.   Programming Concepts

III.   Parallelization Strategies

IV.  Implementation Details

6/15/09 

2 

I. PROJECT DESCRIPTION

Source: http://www.ehow.com/how_2141082_best-berry-pie-ever.html

6/15/09 

3 

Method of Darts

•  Imagine dartboard with circle of radius R inscribed in square

•  Area of circle

•  Area of square
•  Area of circle
 Area of square

€

= π R2

€

= 2R()2 = 4R2

€

=
π R2

4R2
=
π
4

Method of Darts

•  So, ratio of areas proportional to π

•  How to find areas?

–  Suppose we threw darts (completely
randomly) at dartboard

–  Could count number of darts landing in circle and total
number of darts landing in square

–  Ratio of these numbers gives approximation to ratio of areas

–  Quality of approximation increases with number of darts
•  π = 4 × # darts inside circle
 # darts thrown

6/15/09 

4 

Method of Darts

•  Okay, Rebecca, but how in the world do we
simulate this experiment on computer?
–  Decide on length R

–  Generate pairs of random numbers (x, y) s.t.
-R ≤ x, y ≤ R

–  If (x, y) within circle (i.e. if (x2+y2) ≤ R2), add one to
tally for inside circle

–  Lastly, find ratio

II. PROGRAMMING
CONCEPTS
Nissan Pivo Concept Car. Source: http://www.gizmag.com/go/4683/picture/15670/

6/15/09 

5 

II. Programming Concepts

•  Pseudorandom numbers

•  Typecast and coercion

•  Datatypes

Pseudorandom Numbers

•  In C language, function int rand(void) generates
“pseudo-random integer in range 0 to RAND_MAX”

•  RAND_MAX: C-language constant denoting maximum
random number generated; actual value varies with
implementation

•  Divide “random” number by maximum random number
to get a number between 0 and 1*

•  Numbers generated by rand() not really random;
same sequence every time

•  Change seed for random number generator with void
srand(unsigned int seed)	

6/15/09 

6 

Type Cast and Coercion

•  int a = rand(); double b = a/RAND_MAX;

–  b equals 0

•  int a = rand(); double b = ((double) a)/((double)
RAND_MAX);

–  b equals correct value

•  Type conversion rules:

–  int/int → int	

–  int/double → double	

–  double/int → double	

–  double/double → double

Datatypes

•  For large number of darts, need larger datatype
than int or risk overflow

•  On some computers (varies by platform):
Data Type Range

int -32,768  +32,767
long int -2,147,483,648  +2,147,483,647

unsigned long int 0  +4,294,967,295

6/15/09 

7 

III. PARALLELIZATION
STRATEGIES

III. Parallelization Strategies

•  What tasks independent of each other?

•  What tasks must be performed sequentially?

•  Using PCAM parallel algorithm design strategy

6/15/09 

8 

Partition

•  “Decompose problem into fine-grained tasks to
maximize potential parallelism”

•  Finest grained task: throw of one dart

•  Each throw independent of all others

•  If we had huge computer, could assign one
throw to each processor

Communication

“Determine communication pattern among tasks”

•  Each processor throws dart(s) then sends results back to
manager process

6/15/09 

9 

Agglomeration

“Combine into coarser-grained tasks, if necessary, to
reduce communication requirements or other costs”

•  To get good value of π, must use millions of darts

•  We don’t have millions of processors available

•  Furthermore, communication between manager and
millions of worker processors would be very expensive

•  Solution: divide up number of dart throws evenly
between processors, so each processor does a share
of work

Mapping

“Assign tasks to processors, subject to tradeoff
between communication cost and concurrency”

•  Assign role of “manager” to processor 0

•  Processor 0 will receive tallies from all the other
processors, and will compute final value of π

•  Every processor, including manager, will perform
equal share of dart throws

6/15/09 

10 

IV. IMPLEMENTATION
DETAILS
Detail from Vincent van Gogh’s Sunflowers. Source:
http://painting.about.com/od/famouspainters/ig/Van-Gogh-and-Expressionism/Sunflower-Detail.htm

IV. Implementation Details

1.   Implement using six basic MPI functions

2.   Add OpenMP capabilities

3.   Implement using collective operations

6/15/09 

11 

Step 1

•  Create function pi_basic(…) that uses only six
basic functions covered in part 1
–  pi_basic(…) should call function throw_darts(…)

to perform the actual throwing of darts

•  Test your implementation and make sure it works

Step 2

•  Use OpenMP to parallelize throw_darts(…) over a
node

•  Parallelization will occur in loop

•  Make sure code works properly

6/15/09 

12 

Step 3

•  Create function pi_advanced(…) that uses MPI
collective operations

•  This should require trivial change from pi_basic
(…)

Skeleton Code

#include <mpi.h>
#include <stdio.h>
int main(int argc, char

**argv) {
/* declarations here */
 MPI_Init(&argc,

&argv);
 double start =

MPI_Wtime();
 pi_simple(…);
 double finish =

MPI_Wtime();
 printf(“Processor %d

took %f s for
pi_simple”, me,
finish-start);

 double start =
MPI_Wtime();

 pi_advanced(…);
 double finish =

MPI_Wtime();
 printf(“Processor %d

took %f s for
pi_advanced”, me,
finish-start);

 MPI_Finalize();
}

6/15/09 

13 

Doing this Project on Smoky

•  Bring up shell on Mac or Linux or PuTTY shell on Windows

•  Log into jaguar with your username (temporary guest accounts
or your regular account)
–  ssh –Y hqi@smoky.ccs.ornl.gov
–  Enter your PIN number and then 6-digit SECURID number (or guest

account password)

•  Create directory for program and write program

•  Compile using mpicc (e.g. mpicc -o pi.o pi.c)
–  For OpenMP, use -mp=nonuma flag, i.e., mpicc -mp=nonuma
pi.c

•  No link to MPI or OpenMP libraries necessary – Smoky takes
care of that

•  Write batch script and submit using qsub scriptname

Bibliography/Resources

•  Heath, Michael T. (2006) Notes for CS554: Parallel Numerical
Algorithms, http://www.cse.uiuc.edu/cs554/notes/index.html

•  Kernighan, Brian W. and Dennis M. Ritchie. The C
Programming Language, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1988.

•  C: The float and double Data Types and the sizeof Operator
http://www.iota-six.co.uk/c/b3_float_double_and_sizeof.asp

•  C Data types
http://www.phim.unibe.ch/comp_doc/c_manual/C/CONCEPT/
data_types.html

•  NCCS Webpages http://www.nccs.gov/

6/15/09 

14 

Appendix: Better Ways to Compute π

•  Look it up on the internet, e.g.
http://oldweb.cecm.sfu.ca/projects/ISC/data/ pi.html

•  Compute using the BBP (Bailey-Borwein-Plouffe)
formula

•  For less accurate computations, try your programming
language’s constant, or quadrature or power series
expansions

€

π =
4

8n +1
−

2
8n + 4

−
1

8n + 5
−

1
8n + 6











n= 0

∞

∑ 1
16









n

Appendix: Better Ways to Generate
Pseudorandom Numbers

•  For serial codes

–  Mersenne twister

–  GSL (Gnu Scientific Library), many generators available
(including Mersenne twister)
http://www.gnu.org/software/gsl/

•  For parallel codes

–  SPRNG, regarded as leading parallel pseudorandom number
generator http://sprng.cs.fsu.edu/

–  PPRNG, Bill Cochran’s new parallel pseudorandom number
generator, supposedly superior to SPRNG
http://runge.cse.uiuc.edu/~wkcochra/pprng/

